The Direct Determination of the Crystal Structure of $\mathbf{N a B}(\mathbf{O H})_{\mathbf{4}} \cdot \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathrm{O}$

By S. Block and A. Perloff
National Bureau of Standards, Washington 25, D. C., U.S.A.

(Received 13 February 1963)
The structure of $\mathrm{NaB}(\mathrm{OH})_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ has been determined by direct methods. Three-dimensional $\mathrm{Cu} K \alpha$ single-crystal data were used. The space group is $P \overline{1}, Z=2$ and the cell dimensions are:

$$
\begin{array}{ll}
a=6 \cdot 126 \pm 0.008 \AA & \alpha=67^{\circ} 55^{\prime} \pm 07^{\prime} \\
b=8 \cdot 180 \pm 0.008 \AA & \beta=110^{\circ} 35^{\prime} \pm 07^{\prime} \\
c=6 \cdot 068 \pm 0.008 \AA & \gamma=101^{\circ} 51^{\prime} \pm 07^{\prime}
\end{array}
$$

The structure consists of discrete tetrahedral $\mathrm{B}(\mathrm{OH})_{4}^{-}$groups and octahedrally coordinated sodium ions. An octahedron shares two edges to form chains parallel to the [100] direction. The chains are linked in the [001] direction by boron tetrahedra to form sheets parallel to the (010) face. Hydrogen bonds connect oxygen atoms within the sheet and link the sheets into a three-dimensional network. Bond distances and bond angles are presented and the application of the direct method is discussed.

Introduction

The structure determination of $\mathrm{NaB}(\mathrm{OH})_{4} .2 \mathrm{H}_{2} \mathrm{O}$ was undertaken for two reasons. One was to test the applicability of the general equation of Karle \& Hauptman (1959) to the solution of the structure of a crystal of triclinic symmetry containing atoms of similar scattering power. The other was to further understanding of borate structural chemistry.

Experimental

The crystals were grown by adding an excess of sodium metaborate to a 0.5 N sodium hydroxide solution, warming to dissolve and then allowing this supersaturated solution to cool to room temperature. The cell parameters were determined with a calibrated precession camera. The cell dimensions* are

$$
\begin{array}{lll}
a=6 \cdot 126 \pm 0.008 \AA & \alpha=67^{\circ} 55^{\prime} \pm 07^{\prime} & \begin{array}{c}
\varrho_{o}=1.743 \\
\text { (Kemp, 1956) }
\end{array} \\
b=8 \cdot 180 \pm 0.008 \AA & \beta=110^{\circ} 35^{\prime} \pm 07^{\prime} & Z_{c}=2.001 \\
c=6.068 \pm 0.008 \AA & \gamma=101^{\circ} 51^{\prime} \pm 07^{\prime} &
\end{array}
$$

This cell was used during the course of this work and all work herein reported is on this basis.

The conventional unit cell obtained by the Delaunay reduction (Donnay \& Nowacki, 1954) is:

$$
\begin{array}{ll}
a=6 \cdot 943 & \alpha=93^{\circ} 11^{\prime} \\
b=8 \cdot 149 & \beta=125^{\circ} 06^{\prime} \\
c=6 \cdot 126 & \gamma=105^{\circ} 46^{\prime}
\end{array}
$$

[^0]The transformation matrix to this new cell is

$$
\left(\begin{array}{l}
101 \\
01 \overline{1} \\
\overline{1} 00
\end{array}\right)
$$

Three-dimensional data were collected by the integrating Weissenberg method. The intensities were read on a densitometer. Lorentz and polarization corrections were applied by means of a program written for an IBM 704 computer. The data were placed on a single scale by correlation with a cross level. The crystal was of such dimensions that the maximum absorption correction was estimated to be less than 0.08 . As photographic techniques were used, it was considered unnecessary to apply these corrections.

Structure determination

The first step was to calculate values of ε where $\varepsilon^{2}=K F_{0}^{2} / \sum_{i} f_{i}^{2}$ and $F_{o}=$ observed structure amplitude, f_{i} is the i th scattering factor and K is the value at the appropriate $\sin \theta / \lambda$ of the function which places the data on an absolute scale and corrects for the temperature motion. In order to remove the effect of overlap of atoms on the statistical distribution, only data for which $h k l \neq 0$ were used for the calculation of the K curve. Values of $\overline{|E|^{2}}, \overline{|E|}$, and $\overline{\left|E^{2}-1\right|}$ were calculated and are presented in Table 1. For space group $P \overline{1}, \varepsilon$ and E are equivalent.

As can be seen by inspection of columns 2,3 , and 4 (Table 1), the presence or absence of a center of symmetry cannot be determined. The method proposed by Howells, Philllips \& Rogers (1950) also gave ambiguous results. A piezoelectric test of the crystals

Table 1. Average values of $|E|^{2},|E|$, and $\left|E^{2}-1\right|$

Average	Theoretical F_{c}		$\underset{F_{0}}{\mathrm{NaBO}_{2} .4 \mathrm{H}_{2} \mathrm{O}}$		$\mathrm{Na}_{4} \mathrm{P}_{4} \mathrm{O}_{12} . \pm \mathrm{H}_{2} \mathrm{O}$	
	Centrosymmetric	Non-centro symmetric	Experimental	Corrected for extinction	$F_{0}{ }^{2}$	$F_{c}{ }^{2}$
$\|E\|^{2}$	1.0	1.0	0.970	1.054	1.0	1.04
$\|E\|$	0.798	0.886	0.819	0.818	0.833	0.838
$\left\|E^{2}-1\right\|$	0.968	0.736	$0 \cdot 869$	0.987	0.875	0.934

was negative, and it was decided to begin the structure determination assuming a center of symmetry.

The values of ε^{\prime} were computed from the integrated formula ($I_{2,0}$) (Karle \& Hauptman, 1959)

$$
\begin{aligned}
\left(I_{2,0}\right)= & \left|\varepsilon_{B}^{\prime}\right|^{2}-1= \\
& \frac{2 \sigma_{2}^{2}}{\left(C_{1}\right)^{2} \sigma_{4}}\left\langle\left(\frac{\left|\varepsilon_{K}\right|^{t}-1}{\log \left|\varepsilon_{K}\right|}-M\right)\left(\frac{\left|\varepsilon_{H+K}\right|^{t}-1}{\log \left|\varepsilon_{H+K}\right|}-M\right)\right\rangle_{K}
\end{aligned}
$$

where $t=$ integration range, chosen as 3 ,

$$
\sigma_{n}=\sum_{i=1}^{N} f_{i}^{n}
$$

$N=$ number of atoms in the unit cell
and for $P \overline{1}$

$$
M=\left\langle\frac{\left|\varepsilon_{K}\right|^{t}-1}{\log \left|\varepsilon_{K}\right|}\right\rangle_{K}=2.90
$$

It should be noted that any ε^{\prime} can be calculated, even those outside the observed sphere of reflection. The reliability will depend on the number of contributors to the average value. Values of ε^{\prime} were calculated for which no experimental ε was available. If the number of contributors was adequate and if the ε^{\prime} was large, it was used for subsequent phase determinations.

A comparison of the values of ε^{\prime} and ε showed a large apparent discrepancy for the $08 \overline{\mathrm{l}}$ reflection. Rechecking the original data disclosed a transcription error; the correct magnitude of $\varepsilon(08 \overline{1})$ is 1.34 and not $2 \cdot 96$. The magnitude of ε^{\prime} is $1 \cdot 37$. Thus the comparison can be a useful check of the data.

For the initial phase determining process, the integrated equation ($I_{3,0}$) (Karle \& Hauptman, 1959) was used.

$$
\begin{aligned}
\left(I_{3,0}\right)= & \varepsilon_{H_{1}}^{\prime} \varepsilon_{H_{2}}^{\prime} \varepsilon_{H_{1}+H_{2}}^{\prime} \\
= & \frac{\sigma_{2}^{3}}{\left[C_{1}(t)\right]^{3} \sigma_{4}^{3 / 2}}\left\langle L_{K} L_{H_{1}+K} L_{H_{1}+H_{2}+K}\right\rangle_{K}-2 \frac{\sigma_{6}}{\sigma_{4}^{3 / 2}} \\
& +\frac{\sigma_{8}^{1 / 2}}{\sigma_{4}}\left(\varepsilon_{H_{1}}^{\prime} \varepsilon_{H_{1}}^{\prime \prime \prime}+\varepsilon_{H_{2}}^{\prime} \varepsilon_{H_{2}}^{\prime \prime \prime}+\varepsilon_{H_{1}+H_{2}}^{\prime} \varepsilon_{H_{1}+H_{2}}^{\prime \prime \prime}\right)+R_{3,0}^{\prime}
\end{aligned}
$$

where $L_{H}=\left(\left|\varepsilon_{H}\right|^{t}-1\right) / \log \left|\varepsilon_{H}\right| ; t=$ the integration range which was taken as 3 ; and the simplifying assumption was made that $\varepsilon^{\prime \prime \prime} \simeq \varepsilon^{\prime}$. The remainder terms ($R_{3,0}^{\prime}$) were ignored. Under these conditions the above becomes

$$
\begin{aligned}
\left(I_{3,0}\right)= & \varepsilon_{H_{1}}^{\prime} \varepsilon_{H_{2}}^{\prime} \varepsilon_{H_{1}+H_{2}}^{\prime}=0.4652\left\langle L_{K} L_{H_{1}+K} L_{H_{1}+H_{2}+K}\right\rangle_{K} \\
& -0.5973+0.3151\left(\left|\varepsilon_{H_{1}}^{\prime}{ }^{2}+\left|\varepsilon_{H_{2}}^{\prime}\right|^{2}+\left|\varepsilon_{H_{1}+H_{2}}^{\prime}\right|^{2}\right) .\right.
\end{aligned}
$$

Table 2. Comparison of $\left(I_{3,0}\right)$ and $\varepsilon^{\prime} \varepsilon^{\prime} \varepsilon^{\prime}$

H	$\varepsilon^{\prime}\left(\sigma_{\varepsilon^{\prime}}\right)$	$\varepsilon^{\prime} \varepsilon^{\prime} \varepsilon^{\prime}\left(\sigma_{\varepsilon^{\prime} \varepsilon^{\prime} \varepsilon^{\prime}}\right)$	$I_{3,0}\left(\sigma_{I_{3,0}}\right)$
$0 \overline{4} 1$	1.42 (1.04)	$2 \cdot 89$ (1-49)	$2 \cdot 43$ (3.20)
$08 \overline{2}$	1.43 (1.50)		
$04 \overline{1}$	$1.42(1.04)$		
$\overline{132}$	-1.29(0.99)	$-2 \cdot 47(1 \cdot 33)$	$-1.09(2.71)$
264	- I.49 (1-27)		
132	-1.29 (0.99)		
$21 \overline{4}$	$2 \cdot 14$ (1-10)	9.53 (1-53)	$7 \cdot 42$ (3•37)
253	$2 \cdot 32$ (1.40)		
$4 \overline{4} \overline{1}$	1.92 (1-23)		
$62 \overline{2}$	$1 \cdot 44$ (1-39)	2.95 (1-71)	1.20 (3.87)
$\overline{4} 46$	- $1.38(1.50)$		
264	- 1.49 (1.27)		
$53 \overline{\text { I }}$	1.62 (1.23)	$4 \cdot 64(1 \cdot 44)$	$2 \cdot 60$ (2.91)
$\overline{2} 2 \overline{2}$	1.75 (1.07)		
$35 \overline{3}$	$1 \cdot 64(1 \cdot 20)$		
2 $\overline{1} 2$	1.00 (1.03)	1.47 (1-47)	$0 \cdot 89$ (3.08)
$\overline{4} 2 \overline{4}$	1.47 (1.48)		
$\overline{2} 1 \overline{2}$	1.00 (1.03)		
182	1.69 (1.33)	$2 \cdot 02(1.59)$	0.87 (3.45)
$2 \overline{4} \overline{6}$	1.34 (1-36)		
$34 \overline{4}$	$0 \cdot 89(1 \cdot 22)$		
141	1.77 (1.00)	$4 \cdot 08(1 \cdot 42)$	$2.98(2 \cdot 86)$
$4 \overline{17}$	1.92 (1.23)		
500	$1 \cdot 20$ (1-23)		
323	1.99 (1-12)	2.41 (1-28)	0.61 (2.46)
$\overline{1} 2 \overline{2}$	$-1.08(1.00)$		
241	$-1 \cdot 12(1 \cdot 02)$		
$21 \overline{4}$	$2 \cdot 14$ (1-10)	$8.04(1.47)$	6.29 (3.02)
226	2.00 (1.33)		
432	$1 \cdot 87$ (1-16)		

In Table 2 are presented ten randomly selected values of triple products calculated by the $I_{3,0}$ equation and by multiplying the appropriate ε^{\prime} values. The standard deviations shown in the table were calculated by the following formulas, which assume perfect data without correlation (personal communication, J. Karle).

$$
\begin{aligned}
\sigma\left(\varepsilon^{\prime 2}\right) & =2 N / D^{\frac{1}{2}} \\
\sigma\left(\varepsilon^{\prime} \varepsilon^{\prime} \varepsilon^{\prime}\right) & =\left(\Sigma\left[\sigma\left(\varepsilon^{\prime}\right)\right]^{2}\right)^{\frac{1}{2}} \\
\sigma\left(I_{3,0}\right) & =(2 N)^{3 / 2} / 8^{\frac{1}{2}} D^{\frac{1}{2}}
\end{aligned}
$$

where $N=$ number of atoms in the unit cell $=16$ and $D=$ number of terms in the particular calculation.

In general the magnitudes computed by ($I_{3,0}$) are
smaller than those of $\varepsilon^{\prime} \varepsilon^{\prime} \varepsilon^{\prime}$. However, all values from $I_{3,0}$ and $\varepsilon^{\prime} \varepsilon^{\prime} \varepsilon^{\prime}$ agree within one $\sigma\left(I_{3,0}\right)$. The agreement of phases is excellent and is discussed in more detail below.

The possibility of rational dependence (Hauptman \& Karle, 1959) was considered and a FORTRAN program was written for a high-speed electronic computer which obtained ${\overline{|\varepsilon|^{2}}}^{2}$ for all subsets described by means of a congruence of the form

$$
a h+b k+c l=n(\bmod m)
$$

where a, b, c, and the prime factors of m are integers ≤ 14. No strong rational dependence of this form was found. However, later it was seen that there is considerable overlap (Hauptman \& Karle, 1962) in the Patterson synthesis and this, plus the extinction effects, probably accounts for the lack of better agreement.

The signs of $\overline{2} 5 \overline{3}\left(\varepsilon^{\prime}=2 \cdot 32\right), \quad 323\left(\varepsilon^{\prime}=1.99\right)$ and $21 \overline{4}\left(\varepsilon^{\prime}=2 \cdot 14\right)$ were assumed positive and eventually the signs of 90 reflections were determined by utilizing the $I_{3,0}$ equation. A three-dimensional electron density map was calculated, but the structure was not readily apparent. In retrospect, it is clear that that the insufficient number of terms caused the peak heights to be incorrect and shifted from their true positions.

Of the 90 reflections used in the Fourier synthesis, the completed structure showed that 87 had the correct signs. The $|\varepsilon|$ values used were not the largest 90 , but those which were readily calculated and gave seemingly consistent sign indications. They ranged in magnitude from 0.52 to 2.59 with 52 values above 1.5 and 80 above 1.0 .

As it was not then known whether the inability to interpret the Fourier map was due to insufficient data, incorrect assumption of $P \overline{1}$ symmetry or the inability of the equation to give correct sign determinations, it was decided to compute a three-dimensional Patterson map and also to redetermine signs independently using the original probability method described in the A.C.A. monograph by Hauptman \& Karle (1953) for the centrosymmetric case. Owing to considerable overlap the Patterson synthesis was not immediately interpretable. The structure was quickly solved by the original probability methods.

The relations

$$
\begin{aligned}
& \Sigma_{1}=s E_{2 H}=s \sum_{H}\left|E_{H}\right|^{2}-1 \\
& \Sigma_{3}=s E_{H}=s \sum_{i j} E_{H_{i}}\left(\left|E_{H j}\right|^{2}-1\right), H=H_{i}+2 H_{j}
\end{aligned}
$$

gave encouraging sign determinations. After 39 signs were thus determined,

$$
\Sigma_{2}=s E_{H}=s \sum_{K} E_{I I_{i}} E_{K}, H=H_{i}+K
$$

was used. In the early stages of the Σ_{2} calculation, signs were compared with those calculated by equation ($I_{3}, 0$) and found to be in good agreement. In order to
obtain good resolution Σ_{2} was used to obtain as many signs as possible. Of $632 E$'s with magnitudes $>0 \cdot 4$ the signs of 504 were thus determined. The electron density map obtained from these data was readily interpretable. The initial R value was 34%. The parameters were refined by the least-squares program of Busing \& Levy (1959a) to $R=14.9 \%$. A comparison of the observed and calculated structure factors showed that the large F_{o} were consistently smaller than F_{c}. This indicated extinction effects. The intensities were corrected for secondary extinction by the simple method described by James (1954) where $I_{\text {corr }}=I_{\text {obs }} /\left(1-2 g I_{\text {obs }}\right)$. The extinction parameter was $g=0.00045$. The intensity scale was such that the maximum correction was a factor of 4 .

With the corrected data a difference map was made in an effort to locate hydrogen atoms. The resulting map contained more positive areas than the number of hydrogen atoms to be placed so that the result is not definitive. However, the hydrogen bonding suggested by the shortest oxygen to oxygen distances was corroborated by areas of positive electron density between all of the appropriate pairs of oxygen atoms. These positions were used as initial parameters for the hydrogen atoms in a final least-squares refinement.

Table 3. Final atomic parameters

Atom	x	y	z	B
Na	$0 \cdot 2412$	$0 \cdot 1149$	$0 \cdot 3692$	$1 \cdot 61$
$\mathrm{O}(1)$	0.2120	$0 \cdot 2190$	0.9214	$1 \cdot 32$
$\mathrm{O}(2)$	0.7640	$0 \cdot 4608$	$0 \cdot 2661$	$1 \cdot 10$
$\mathrm{O}(3)$	0.5610	$0 \cdot 3644$	$0 \cdot 8375$	$1 \cdot 12$
$\mathrm{O}(4)$	0.2210	$0 \cdot 3663$	0.4879	$1 \cdot 09$
$\mathrm{O}(5)$	$0 \cdot 8158$	$0 \cdot 0700$	$0 \cdot 2213$	$1 \cdot 77$
$\mathrm{O}(6)$	$0 \cdot 6691$	$0 \cdot 1604$	$0 \cdot 6088$	$2 \cdot 04$
B	$0 \cdot 3047$	$0 \cdot 3728$	0.7439	0.92
H(1)	$0 \cdot 69$	$0 \cdot 12$	$0 \cdot 09$	$3 \cdot 7$
H(2)	0.72	0.26	0.49	$1 \cdot 6$
$\mathrm{H}(3)$	0.71	0.41	$0 \cdot 15$	$2 \cdot 9$
H(4)	0.93	0.78	$0 \cdot 15$	-*
H(5)	$0 \cdot 74$	0.98	$0 \cdot 16$	-*
H(6)	0.45	0.57	$0 \cdot 20$	$2 \cdot 1$
H(7)	$0 \cdot 06$	0.39	0.42	-*
H(8)	$0 \cdot 39$	$0 \cdot 82$	$0 \cdot 28$	$3 \cdot 0$

* Indicates negative temperature factor, reset to +0.05 for calculating structure factors.

With the data as corrected for extinction, the atomic parameters ultimately refined to give $R=11.7 \%$ (zero reflections omitted) and $R=13 \cdot 3 \%$ (zero reflections included). The final coordinates are presented in Table 3. The observed and calculated structure factors are presented in Table 4.

Description of the structure

In the past this compound has been designated by formulas such as $\mathrm{Na}_{2} \mathrm{O} . \mathrm{B}_{2} \mathrm{O}_{3} .8 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NaBO}_{2} .4 \mathrm{H}_{2} \mathrm{O}$. On the basis of the present structural study, a more appropriate formula is $\mathrm{NaB}(\mathrm{OH})_{4} .2 \mathrm{H}_{2} \mathrm{O}$, and the compound can be designated as sodium tetrahydroxoborate dihydrate.

Table 4. Observed and calculated structure factors

Table 4 (cont.)

Fig. 1. The structure projected along the b axis. A chain of sodium octahedra is shown in heavy lines.

The structure consists of discrete tetrahedral $\mathrm{B}(\mathrm{OH})_{\overline{4}}^{-}$groups and octahedrally coordinated sodium ions. Each slightly distorted sodium octahedron is formed from four water molecules and two hydroxyl groups. The hydroxyl groups belong to two different $\mathrm{B}(\mathrm{OH})_{4}^{-}$groups. An octahedron shares two edges, defined by pairs of centrosymmetrically related water molecules, with other octahedra to form chains parallel to the [100] direction (Fig. 1). The chains are linked in the [001] direction by boron tetrahedra. Each tetrahedron shares two of its corners with octahedra in adjacent chains, so that a sheet is formed parallel to the (010) face. Additional bonding within a sheet is provided by four of the eight crystallo-

Fig. 2. The structure projected along the a axis. The crystallographically independent hydrogen bonds are indicated by dotted lines.

Table 5. Bond distances and angles

Boron tetrahedron	
$\mathrm{B}-\mathrm{O}(1)$	$1 \cdot 478 \pm 0.005 \AA$
$\mathrm{~B}-\mathrm{O}(2)$	$1 \cdot 479 \pm 0.007$
$\mathrm{BOO}(3)$	1.477 ± 0.006
$\mathrm{~B}-\mathrm{O}(4)$	1.474 ± 0.005
$\mathrm{O}(1)-\mathrm{O}(3)$	$2 \cdot 349 \pm 0.005$
$\mathrm{O}(2)-\mathrm{O}(5)$	$2 \cdot 463 \pm 0.004$
$\mathrm{O}(1)-\mathrm{O}(2)$	$2 \cdot 428 \pm 0.005$
$\mathrm{O}(2)-\mathrm{O}(3)$	2.452 ± 0.006
$\mathrm{O}(2)-\mathrm{O}(4)$	$2 \cdot 382 \pm 0.005$
$\mathrm{O}(3)-\mathrm{O}(4)$	2.392 ± 0.005

$\mathrm{O}(1)-\mathrm{B}-\mathrm{O}(3)$	$105 \cdot 2 \pm 0 \cdot 4^{\circ}$
$\mathrm{O}(1)-\mathrm{B}-\mathrm{O}(4)$	$113 \cdot 2 \pm 0 \cdot 4$
$\mathrm{O}(3)-\mathrm{B}-\mathrm{O}(4)$	$108 \cdot 3 \pm 0 \cdot 4$
$\mathrm{O}(2)-\mathrm{B}-\mathrm{O}(4)$	$107 \cdot 6 \pm 0 \cdot 4$
$\mathrm{O}(2)-\mathrm{B}-\mathrm{O}(3)$	$112 \cdot 1 \pm 0 \cdot 4$
$\mathrm{O}(2)-\mathrm{B}-\mathrm{O}(1)$	$110 \cdot 4 \pm 0 \cdot 4$

Sodium octahedron

$\mathrm{Na}-\mathrm{O}(1)$	$2 \cdot 474 \pm 0.004 \AA$
$\mathrm{Na}-\mathrm{O}(4)$	$2 \cdot 458 \pm 0.004$
$\mathrm{Na}-\mathrm{O}(5)$	$2 \cdot 437 \pm 0.002$
$\mathrm{Na}-\mathrm{O}(5)$	$2 \cdot 480 \pm 0.004$
$\mathrm{Na}-\mathrm{O}(6)$	$2 \cdot 540 \pm 0 \cdot 004$
$\mathrm{Na}-\mathrm{O}(6)$	$2 \cdot 371 \pm 0 \cdot 005$
$\mathrm{Na}-\mathrm{Na}$	$3 \cdot 682 \pm 0 \cdot 004$
$\mathrm{O}(2)-\mathrm{O}(6)$	$3.332 \pm 0 \cdot 005$
$\mathrm{O}(5)-\mathrm{O}(6)$	$3 \cdot 440 \pm 0 \cdot 005$
$\mathrm{O}(4)-\mathrm{O}(6)$	$3 \cdot 235 \pm 0.006$

$\mathrm{O}(1)-\mathrm{O}(6)$	$4 \cdot 038 \pm 0.005 \AA$
$\mathrm{O}(4)-\mathrm{O}(1)$	$4 \cdot 028 \pm 0.005$
$\mathrm{O}(4)-\mathrm{O}(5)$	3.334 ± 0.005
$\mathrm{O}(5)-\mathrm{O}(6)$	$3 \cdot 154 \pm 0.006$
$\mathrm{O}(1)-\mathrm{I}(5)$	3.303 ± 0.004
$\mathrm{O}(4)-\mathrm{O}(5)$	$3 \cdot 508 \pm 0.004$
$\mathrm{O}(5)-\mathrm{O}(5)$	$3 \cdot 260 \pm 0 \cdot 006$
$\mathrm{O}(5)-\mathrm{O}(6)$	3.642 ± 0.005
$\mathrm{O}(6)-\mathrm{O}(6)$	$3 \cdot 372 \pm 0.007$

Hydrogen-bonded

Linking sheets

$\mathrm{O}(2)-\mathrm{O}(3)$	$2.793 \pm 0.005 \AA$
$\mathrm{O}(2)-\mathrm{O}(4)$	$2 \cdot 776 \pm 0.005$
$\mathrm{O}(2)-\mathrm{O}(6)$	$2 \cdot 669 \pm 0.005$
$\mathrm{O}(4)-\mathrm{O}(3)$	$2 \cdot 812 \pm 0.005$
$\mathrm{O}(6)-\mathrm{H}(2)$	1.0 ± 0.1
$\mathrm{O}(2)-\mathrm{H}(3)$	0.9 ± 0.1
$\mathrm{O}(3)-\mathrm{H}(6)$	0.5 ± 0.13
$\mathrm{O}(4)-\mathrm{H}(7)$	$0.9 \pm 0 \cdot 1$
$O(5) \text { and }$	(6) are in water

Within sheets		
$\mathrm{O}(5)-\mathrm{O}(3)$	$2.904 \pm 0.005 \AA$	
$\mathrm{O}(5)-\mathrm{O}(1)$	2.764 ± 0.006	
$\mathrm{O}(6)-\mathrm{O}(1)$	3.238 ± 0.005	
$\mathrm{O}(6)-\mathrm{O}(3)$	$2 \cdot 827 \pm 0 \cdot 006$	
$\mathrm{O}(5)-\mathrm{H}(1)$	0.9	
$\mathrm{O}(1)-\mathrm{H}(4)$	0.8	
O	± 0.1	
$\mathrm{O}(5)-\mathrm{H}(5)$	0.9	
$\mathrm{O}(6)-\mathrm{H}(8)$	0.9	
0.1		

graphically distinct hydrogen bonds. The remaining hydrogen bonds link the sheets into a three-dimensional network. The hydrogen bonds are indicated in Fig. 2. All of the hydrogen bonds within a sheet are of the $\mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ type. Of the four hydrogen bonds linking the sheets, three are $\mathrm{OH}-\mathrm{OH}$ and one is an $\mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ bond. There are no $\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}$ hydrogen bonds in the crystal.

The interatomic distances and angles as computed
by the Busing \& Levy (1959b) program are presented in Table 5. The four B-O distances are equal within the limits of error and the mean bond distance is $1 \cdot 476 \pm 0.005 \AA$. The tetrahedron is fairly uniform with angles ranging from $105 \cdot 9^{\circ}$ to $113 \cdot 1^{\circ}$. The mean angle is $109 \cdot 5^{\circ} \pm 2 \cdot 3^{\circ}$.
The distances between hydrogen-bonded atoms are in the normal range, although $\mathbf{O}(1)-\mathbf{O}(6)$ is appreciably longer than the others.

While the $\mathrm{O}-\mathrm{H}$ distances cannot be considered accurate, they are all normal with the exception of $\mathrm{O}(3)-\mathrm{H}(6)$. The $0.5 \AA$ figure is not thought to represent a true interatomic distance, but it is suggestive of something different about that oxygen atom. If the proposed hydrogen bonding scheme is correct, then $O(3)$ is peculiar in that it is involved in four hydrogen bonds as well as having a normal bond to a boron. It is hoped that a neutron-diffraction study on this crystal may be done in the future to locate the hydrogen atoms unambiguously.

It should be noted that this structure obeys the postulates proposed by Edwards \& Ross (1960). The ratio of cation charge to total boron is one, and the boron exists in a discrete tetrahedrally coordinated form.

Conclusions

The equation ($I_{3,0}$) gave satisfactory phases for this structure. In general, the magnitudes computed by ($I_{3,0}$) are smaller than those of $\varepsilon^{\prime} \varepsilon^{\prime} \varepsilon^{\prime}$. However, all values from $I_{3,0}$ and $\varepsilon^{\prime} \varepsilon^{\prime} \varepsilon^{\prime}$ agree within one $\sigma\left(I_{3,0}\right)$. Possible causes of the systematic deviations are (a) neglect of higher order correction terms (for example overlap in the Patterson syntheses), (b) assumption that $\varepsilon^{\prime 2}=\varepsilon^{\prime \prime \prime} \varepsilon^{\prime}$, (c) crystallographic data which were deficient both in accuracy and perhaps in extent.

Of 250 calculations whose ε^{\prime} values all corresponded to observed reflections, 242 gave correct sign indications. Of these 250 triple sum products only 15 gave a negative average value.

Of 465 triple sum products in which at least one ε^{\prime} did not have an observed counterpart, 443 were correct, 12 wrong, 10 indeterminate and only 8 gave a negative sum. The totals are presented in Table 6.

Table 6

Number of triple sums calculated	715
Correct sign determination	685
Incorrect sign determination	20
Indeterminate	10
Negative	23

Of the incorrect sums, approximately 70% had fewer than the average number of contributors and about 60% had negative triple sums.

Of the 504 reflections obtained from the use of Σ_{2} and included in the second electron density map, the signs of 359 of 364 with $|E| \geq 0 \cdot 7$, were correct while only 116 of 140 reflections with $0 \cdot 7>|E| \geq 0 \cdot 4$
were correct. As only 83% of the phases of the reflections which have E magnitudes less than 0.7 were computed correctly (as compared with 98.6% for those E with magnitudes greater than 0.7) and furthermore as these smaller E values are less significant in the Fourier synthesis, it is probably not worthwhile to calculate these phases.
The relation Σ_{2} should be used for the determination of the signs and as a constant check of previously determined signs. To obtain the original group of signs for Σ_{2}, either Σ_{1} and Σ_{3} or ($I_{3,0}$) can be used. Because it utilizes more data and is the same for all space groups, ($I_{3,0}$) is probably preferable.

After the errors due to extinction effects became apparent, the intensity data were corrected for this and new values of $\mid \overline{E \mid}$ and $\overline{\left|E^{2}-1\right|}$ were calculated (Table 1). The average values now agree very well with those expected for the space group $P \overline{1}$. However, this good agreement does not mean that quality of data is the only criterion for determination of a center of symmetry by statistical methods. The structure of the triclinic form of $\mathrm{Na}_{4} \mathrm{P}_{4} \mathrm{O}_{12} .4 \mathrm{H}_{2} \mathrm{O}$ has been carried out in this laboratory by Dr Helen M. Ondik (1963) and the original data also resulted in ambiguous average values. The structure determination resulted in the space group $P \overline{1}$, an R value of $8 \cdot 6 \%$, and no indications of extinction or absorption effects. Average values of $|E|$ and $\left|E^{2}-1\right|$ from the calculated structure factors still showed the ambiguity as to centrosymmetry (Table 1). This is another example (Hargreaves, 1955; Wilson, 1956) of the fact that the statistical determination of a center of symmetry should be used with caution.

We would like to express our appreciation to Drs J. Karle and H. Hauptman for their very valuable discussions and suggestions.

References

Busing, W.R. \& Levy, H.A. (1959a). ORNL-CF-59-4-37.
Busing, W.R. \& Levy, H.A. (1959b). ORNL-CF-59-12-3. Donnay, J. D. H. \& Nowacki, W. (1954). Crystal Data, p. 138. The Geological Society of America.

Edwards, J. O. \& Ross, V. (1960). J. Inorg. Nuclear Chem. 15, 329.
Hargreaves, A. (1955). Acta Cryst. 8, 12.
Hauptman, H. \& Karle, J. (1953). Solution of the Phase Problem. I. The Centrosymmetric Crystal. A.C.A. monograph.
Hauptman, H. \& Karle, J. (1959). Acta Cryst. 12, 846.
Hauptman, H. \& Karle, J. (1962). Acta Cryst. 15, 547.
Howells, E. R., Phillips, D. C. \& Rogers, D. (1950). Acta Cryst. 3, 210.
James, R. W. (1954). The Optical Principles of the Diffraction of X-Rays, p. 293. London: Bell.
Karle, J. \& Hauptman, H. (1959). Acta Cryst. 12, 404. Kemp, P. H. (1956). The Chemistry of Borates, Part I. p. 29. Cowell.

Ondik, Helen M. (1963). (In preparation.)
Wilson, A. J. C. (1956). Acta Cryst. 9, 143.

[^0]: * The uncertainties quoted on the cell dimensions are estimates based on past experience with the camera and measuring device used. In the authors' opinion a conservative estimate of error will be obtained if these uncertainties are treated as standard deviations.

